- 5. Answer any *four* of the following: (4×5=20)
 - (a) Write various steps involved in Anaerobic process. At which step the alkalinity will be maximum?
 - (b) What are low rate and high rate anaerobic digesters?
 - (c) What is UASBR? Draw a schematic diagram of a UASBR reactor.
 - (d) Write short notes on Duck weed pond.
 - (e) Discuss nutrients removal in wastewater a tertiary treatment.
 - (f) What is septic tank? Discuss advantages and disadvantages of centralized vs. decentralized wastewater treatment.

r i illiteu i ages	P	rin	ted	Pages—4
--------------------	---	-----	-----	---------

ECE602

Following Paper ID						
PAPER ID: 2455	Roll No.					

B. Tech.

(SEM. VI) THEORY EXAMINATION 2011-12

ENVIRONMENTAL ENGINEERING—II

Time: 3 Hours

Total Marks: 100

Note: Attempt *all* questions and assume suitable value of parameters, if not given in questions.

1. Attempt any four of the following:

 $(4 \times 5 = 20)$

- (a) How are the organic contents measured in waste water samples? Discuss any one method in detail.
- (b) Discuss advantages and disadvantages of BOD and COD test.
- (c) What is the maximum permissible limit of nitrate in drinking water? Also discuss the detrimental effects of excess nitrate.
- (d) What is M.P.N.? How it is measured?
- (e) What is Theoretical Oxygen Demand (ThOD)? Determine the ThOD for Glycine (CH₂(NH₂)COOH).
- (f) What size of sample expressed as a percent is required if the 5 day BOD is 400 mg/l and the total oxygen consumed in the BOD bottle is limited to 2 mg/l?

2. Attempt any two of the following:

 $(2 \times 10 = 20)$

- (a) Define:
 - (i) Discrete Particles

- (ii) Flocculating Particles
- (iii) Dilute Suspension
- (iv) Concentrated Suspension.
- (b) Describe the four functional zones of long-rectangular settling tank.
- (c) Name and discuss the four mechanisms thought to occur during coagulation.
- 3. Attempt any *two* of the following: $(10 \times 2 = 20)$
 - (a) A rapid sand filter has a bed depth of 0.7 m. It is composed of sand grains that have a specific gravity of 2.65 and shape factor of 0.82. The porosity of the bed is 0.45 throughout. The sieve analysis of the sand is shown below:

Sieve No.	Mass retained	Average particle size					
	(%)	mm					
1	0.87	1.0					
2	8.63	0.71					
3	21.30	0.54					
4	2 8 .10	0.46					
5	23.64	0.38					
6	7.09	0.32					
7	3.19	0.27					
8	2.16	0.23					
9	1.02	0.18					

Determine the head loss through the bed if the flow rate is 5.0 m/s and water temperature is 17°C.

- (b) Design rapid gravity filter for producing a net filtered water flow of 250 m³/hr. The relevant data is:
 - (i) Quantity of back wash water used = 3% of output
 - (ii) Time lost during back washing = 30 minutes

- (iii) Design rate of filtration = $5 \text{ m}^3/\text{m}^2/\text{hr}$
- (iv) Length to width ratio = 1.25 1.33 : 1
- (v) Under drainage system = central manifold
- (vi) Size of perforations = 9 mm
- (c) Design a secondary circular sedimentation tank to remove alum floc with following data:
 - (i) Average output from settling $tank = 250 \text{ m}^3/hr$
 - (ii) Amount of water lost in desludging = 2%
 - (iii) Average design flow = 255.1 m³/hr
 - (iv) Minimum size of alum floc to be removed = 0.8 mm
 - (v) Sp. gr. of alum floc = 1.002
 - (vi) Expected removal efficiency = 80%
 - (vii) Assumed performance of settling = very good (h = 1/8)
 - (viii) Kinematic viscosity of water at 20 °C = 1.01×10^{-6} m²/s
- 4. Attempt any *two* of the following: $(2\times10=20)$
 - (a) Design a facultative aerated lagoon to serve 40,000 people. For sewage flow @ 180 lpcd = 7200 cu.m/day. Raw BOD₅ = 277 mg/l and final BOD₅ is not to exceed 30 mg/l in winter. Average ambient air temperature in January is 18°C and in summer 37°C.
 - (b) Design a facultative stabilization pond to treat 5000 m³/d municipal wastewater, BOD₅ 230 mg/l, from a town (population 25,000 persons) located in Central India, latitude 22-N, elevation 100 m above sea level. The average temperature is 18°C. The effluent from the pond is to be used for irrigation.
 - (c) (i) Discuss various modifications of activated sludge process (ASP). Also explain role of F/M ratios in ASP.
 - (ii) Write and explain NRC's and Eckenfelder's equation for Trickling filter.